Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Nature ; 628(8009): 776-781, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658683

ABSTRACT

Dissolved organic matter (DOM) is one of the most complex, dynamic and abundant sources of organic carbon, but its chemical reactivity remains uncertain1-3. Greater insights into DOM structural features could facilitate understanding its synthesis, turnover and processing in the global carbon cycle4,5. Here we use complementary multiplicity-edited 13C nuclear magnetic resonance (NMR) spectra to quantify key substructures assembling the carbon skeletons of DOM from four main Amazon rivers and two mid-size Swedish boreal lakes. We find that one type of reaction mechanism, oxidative dearomatization (ODA), widely used in organic synthetic chemistry to create natural product scaffolds6-10, is probably a key driver for generating structural diversity during processing of DOM that are rich in suitable polyphenolic precursor molecules. Our data suggest a high abundance of tetrahedral quaternary carbons bound to one oxygen and three carbon atoms (OCqC3 units). These units are rare in common biomolecules but could be readily produced by ODA of lignin-derived and tannin-derived polyphenols. Tautomerization of (poly)phenols by ODA creates non-planar cyclohexadienones, which are subject to immediate and parallel cycloadditions. This combination leads to a proliferation of structural diversity of DOM compounds from early stages of DOM processing, with an increase in oxygenated aliphatic structures. Overall, we propose that ODA is a key reaction mechanism for complexity acceleration in the processing of DOM molecules, creation of new oxygenated aliphatic molecules and that it could be prevalent in nature.


Subject(s)
Carbon , Fresh Water , Carbon/analysis , Carbon/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Fresh Water/chemistry , Lakes/chemistry , Lignin/chemistry , Oxidation-Reduction , Oxygen/chemistry , Polyphenols/chemistry , Rivers/chemistry , Sweden , Tannins/chemistry , Carbon Cycle
2.
Environ Sci Technol ; 58(8): 3766-3775, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38354716

ABSTRACT

Open storages of organic material represent potentially large sources of the greenhouse gas methane (CH4), an emissions source that will likely become more common as a part of societal efforts toward sustainability. Hence, monitoring and minimizing CH4 emissions from such facilities are key, but effective assessment of emissions without disturbing the flux is challenging. We demonstrate the capacity of using a novel high-resolution hyperspectral camera to perform sensitive CH4 flux assessments at such facilities, using as a test case a biofertilizer storage tank for residual material from a biogas plant. The camera and simultaneous conventional flux chamber measurements showed emissions of 6.0 ± 1.3 and 13 ± 5.7 kg of CH4 h-1, respectively. The camera measurements covered the whole tank surface of 1104 m2, and the chamber results were extrapolated from measurements over 5 m2. This corresponds to 0.7-1.4% of the total CH4 production at the biogas plant (1330 N m3 h-1 corresponding to 950 kg h-1). The camera could assess the entire tank emission in minutes without disturbing normal operations at the plant and revealed additional unknown emissions from the inlet to the tank (17 g of CH4 h-1) and during the loading of the biofertilizer into trucks (3.1 kg of CH4 h-1 during loading events). This study illustrates the importance of adequate measurement capacity to map methane fluxes and to verify that methane emission mitigation efforts are effective. Given the high methane emissions observed, it is important to reduce methane emissions from open storage of organic material, for example by improved digestion in the biogas reactor, precooling of sludge before storage, or building gastight storage tanks with sealed covers. We conclude that hyperspectral, ground-based remote sensing is a promising approach for greenhouse gas monitoring and mitigation.


Subject(s)
Greenhouse Gases , Methane/analysis , Biofuels , Hyperspectral Imaging , Sewage
3.
Environ Sci Technol ; 58(1): 352-361, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38126254

ABSTRACT

Reducing emissions of the key greenhouse gas methane (CH4) is increasingly highlighted as being important to mitigate climate change. Effective emission reductions require cost-effective ways to measure CH4 to detect sources and verify that mitigation efforts work. We present here a novel approach to measure methane at atmospheric concentrations by means of a low-cost electronic nose strategy where the readings of a few sensors are combined, leading to errors down to 33 ppb and coefficients of determination, R2, up to 0.91 for in situ measurements. Data from methane, temperature, humidity, and atmospheric pressure sensors were used in customized machine learning models to account for environmental cross-effects and quantify methane in the ppm-ppb range both in indoor and outdoor conditions. The electronic nose strategy was confirmed to be versatile with improved accuracy when more reference data were supplied to the quantification model. Our results pave the way toward the use of networks of low-cost sensor systems for the monitoring of greenhouse gases.


Subject(s)
Air Pollutants , Greenhouse Gases , Air Pollutants/analysis , Methane/analysis , Electronic Nose , Climate Change , Environmental Monitoring/methods
4.
Wetlands (Wilmington) ; 43(8): 105, 2023.
Article in English | MEDLINE | ID: mdl-38037553

ABSTRACT

Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We first define each of the major C pools and fluxes and provide rationale for their importance to wetland C dynamics. For each approach, we clarify what component of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such as where and when an approach is typically used, who can conduct the measurements (expertise, training requirements), and how approaches are conducted, including considerations on equipment complexity and costs. Finally, we review key covariates and ancillary measurements that enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions. Supplementary Information: The online version contains supplementary material available at 10.1007/s13157-023-01722-2.

5.
ACS ES T Water ; 3(8): 2083-2095, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37588807

ABSTRACT

Positive and negative electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and 1H NMR revealed major compositional and structural changes of dissolved organic matter (DOM) after mixing two sets of river waters in Amazon confluences: the Solimões and Negro Rivers (S + N) and the Amazon and Tapajós Rivers (A + T). We also studied the effects of water mixing ratios and incubation time on the composition and structure of DOM molecules. NMR spectra demonstrated large-scale structural transformations in the case of S + N mixing, with gain of pure and functionalized aliphatic units and loss of all other structures after 1d incubation. A + T mixing resulted in comparatively minor structural alterations, with a major gain of small aliphatic biomolecular binding motifs. Remarkably, structural alterations from mixing to 1d incubation were in essence reversed from 1d to 5d incubation for both S + N and A + T mixing experiments. Heterotrophic bacterial production (HBP) in endmembers S, N, and S + N mixtures remained near 0.03 µgC L-1 h-1, whereas HBP in A, T, and A + T were about five times higher. High rates of dark carbon fixation took place at S + N mixing in particular. In-depth biogeochemical characterization revealed major distinctions between DOM biogeochemical changes and temporal evolution at these key confluence sites within the Amazon basin.

6.
Environ Sci Technol ; 57(30): 11067-11074, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37469326

ABSTRACT

The assumed dominance of chloride (Cl-) in terrestrial ecosystems is challenged by observations of extensive formation of organically bound Cl (Clorg), resulting in large soil Cl storage and internal cycling. Yet, little is known about the spatial distribution of Cl in ecosystems. We quantified patterns of Cl distribution in different habitats along a boreal hillslope moisture gradient ranging from relatively dry upland coniferous forests to wet discharge areas dominated by alder. We confirmed that dry habitats are important for Cl storage but found that Cl pools tended to be larger in moist and wet habitats. The storage of Clorg was less important in wet habitats, suggesting a shift in the balance between soil chlorination and dechlorination rates. Cl concentrations in the herb layer vegetation were high in wet and moist sites attributed to a shift in plant species composition, indicating plant community-dependent ecosystem Cl cycling. Mass-balance calculations showed that internal Cl cycling increased overall ecosystem Cl residence times at all sites and that plant uptake rates of Cl- were particularly high at wet sites. Our results indicate that habitat characteristics including plant communities and hydrology are key for understanding Cl cycling in the environment.


Subject(s)
Ecosystem , Soil , Chlorine/analysis , Wetlands , Chlorides , Forests , Plants
7.
Sci Total Environ ; 895: 164849, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37331406

ABSTRACT

Methane (CH4) emissions (FCH4) from northern freshwater lakes are not only significant but also highly variable in time and one driver variable suggested to be important is precipitation. Rain can have various, potentially large effects on FCH4 across multiple time frames, and verifying the impact of rain on lake FCH4 is key to understand both contemporary flux regulation, and to predict future FCH4 related to possible changes in frequency and intensity of rainfall from climate change. The main objective of this study was to assess the short-term impact of typically occurring rain events with different intensity on FCH4 from various lake types located in hemiboreal, boreal, and subarctic Sweden. In spite of high time resolution automated flux measurements across different depth zones and covering numerous commonly types of rain events in northern areas, in general, no strong impact on FCH4 during and within 24 h after the rainfall could be observed. Only in deeper lake areas and during longer rain events FCH4 was weakly related to rain (R2 = 0.29, p < 0.05), where a minor FCH4 decrease during the rain was identified, suggesting that direct rainwater input, during greater rainfall, may decrease FCH4 by dilution of surface water CH4. Overall, this study indicates that typical rain events in the studied regions have minor direct short-term effects on FCH4 from northern lakes and do not enhance FCH4 from shallow and deeper parts of lakes during and up to 24-h after the rainfall. Instead, other factors such as wind speed, water temperature and pressure changes were more strongly correlated with lake FCH4.

8.
Environ Sci Technol ; 57(23): 8578-8587, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37253265

ABSTRACT

Large greenhouse gas emissions occur via the release of carbon dioxide (CO2) and methane (CH4) from the surface layer of lakes. Such emissions are modeled from the air-water gas concentration gradient and the gas transfer velocity (k). The links between k and the physical properties of the gas and water have led to the development of methods to convert k between gases through Schmidt number normalization. However, recent observations have found that such normalization of apparent k estimates from field measurements can yield different results for CH4 and CO2. We estimated k for CO2 and CH4 from measurements of concentration gradients and fluxes in four contrasting lakes and found consistently higher (on an average 1.7 times) normalized apparent k values for CO2 than CH4. From these results, we infer that several gas-specific factors, including chemical and biological processes within the water surface microlayer, can influence apparent k estimates. We highlight the importance of accurately measuring relevant air-water gas concentration gradients and considering gas-specific processes when estimating k.


Subject(s)
Carbon Dioxide , Greenhouse Gases , Carbon Dioxide/analysis , Lakes/chemistry , Gases , Greenhouse Gases/analysis , Methane/analysis , Water
9.
Sci Total Environ ; 857(Pt 3): 159620, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36280052

ABSTRACT

Rivers are natural biogeochemical systems shaping the fates of dissolved organic matter (DOM) from leaving soils to reaching the oceans. This study focuses on Amazon basin DOM processing employing negative and positive electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI[±] FT-ICR MS) and nuclear magnetic resonance spectroscopy (NMR) to reveal effects of major processes on the compositional space and structural characteristics of black, white and clear water systems. These include non-conservative mixing at the confluences of (1) Solimões and the Negro River, (2) the Amazon River and the Madeira River, and (3) in-stream processing of Amazon River DOM between the Madeira River and the Tapajós River. The Negro River (black water) supplies more highly oxygenated and high molecular weight compounds, whereas the Solimões and Madeira Rivers (white water) contribute more CHNO and CHOS molecules to the Amazon River main stem. Aliphatic CHO and abundant CHNO compounds prevail in Tapajos River DOM (clear water), likely originating from primary production. Sorption onto particles and heterotrophic microbial degradation are probably the principal mechanisms for the observed changes in DOM composition in the Amazon River and its tributaries.


Subject(s)
Rivers , Spectrometry, Mass, Electrospray Ionization , Rivers/chemistry , Dissolved Organic Matter , Magnetic Resonance Spectroscopy , Water
10.
J Geophys Res Biogeosci ; 127(7): e2022JG006793, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36250198

ABSTRACT

Lakes have been highlighted as one of the largest natural sources of the greenhouse gas methane (CH4) to the atmosphere. However, global estimates of lake CH4 fluxes over the last 20 years exhibit widely different results ranging from 6 to 185 Tg CH4 yr-1, which is to a large extent driven by differences in lake areas and thaw season lengths used. This has generated uncertainty regarding both lake fluxes and the global CH4 budget. This study constrains global lake water CH4 emissions by using new information on lake area and distribution and CH4 fluxes distinguished by major emission pathways; ecoclimatic lake type; satellite-derived ice-free emission period length; and diel- and temperature-related seasonal flux corrections. We produced gridded data sets at 0.25° latitude × 0.25° longitude spatial resolution, representing daily emission estimates over a full annual climatological cycle, appropriate for use in global CH4 budget estimates, climate and Earth System Models, bottom-up biogeochemical models, and top-down inverse model simulations. Global lake CH4 fluxes are 41.6 ± 18.3 Tg CH4 yr-1 with approximately 50% of the flux contributed by tropical/subtropical lakes. Strong temperature-dependent flux seasonality and satellite-derived freeze/thaw dynamics limit emissions at high latitudes. The primary emission pathway for global annual lake fluxes is ebullition (23.4 Tg) followed by diffusion (14.1 Tg), ice-out and spring water-column turnover (3.1 Tg), and fall water-column turnover (1.0 Tg). These results represent a major contribution to reconciling differences between bottom-up and top-town estimates of inland aquatic system emissions in the global CH4 budget.

11.
Nat Commun ; 13(1): 3667, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35760781

ABSTRACT

Lateral CH4 inputs to Arctic lakes through groundwater discharge could be substantial and constitute an important pathway that links CH4 production in thawing permafrost to atmospheric emissions via lakes. Yet, groundwater CH4 inputs and associated drivers are hitherto poorly constrained because their dynamics and spatial variability are largely unknown. Here, we unravel the important role and drivers of groundwater discharge for CH4 emissions from Arctic lakes. Spatial patterns across lakes suggest groundwater inflows are primarily related to lake depth and wetland cover. Groundwater CH4 inputs to lakes are higher in summer than in autumn and are influenced by hydrological (groundwater recharge) and biological drivers (CH4 production). This information on the spatial and temporal patterns on groundwater discharge at high northern latitudes is critical for predicting lake CH4 emissions in the warming Arctic, as rising temperatures, increasing precipitation, and permafrost thawing may further exacerbate groundwater CH4 inputs to lakes.


Subject(s)
Groundwater , Lakes , Arctic Regions , Methane/metabolism , Seasons
12.
Glob Chang Biol ; 28(18): 5427-5440, 2022 09.
Article in English | MEDLINE | ID: mdl-35694903

ABSTRACT

Lakes are significant emitters of methane to the atmosphere, and thus are important components of the global methane budget. Methane is typically produced in lake sediments, with the rate of methane production being strongly temperature dependent. Local and regional studies highlight the risk of increasing methane production under future climate change, but a global estimate is not currently available. Here, we project changes in global lake bottom temperatures and sediment methane production rates from 1901 to 2099. By the end of the 21st century, lake bottom temperatures are projected to increase globally, by an average of 0.86-2.60°C under Representative Concentration Pathways (RCPs) 2.6-8.5, with greater warming projected at lower latitudes. This future warming of bottom waters will likely result in an increase in methane production rates of 13%-40% by the end of the century, with many low-latitude lakes experiencing an increase of up to 17 times the historical (1970-1999) global average under RCP 8.5. The projected increase in methane production will likely lead to higher emissions from lakes, although the exact magnitude of the emission increase requires more detailed regional studies.


Subject(s)
Atmosphere , Lakes , Climate Change , Global Warming , Methane , Temperature
13.
Environ Res ; 204(Pt B): 111978, 2022 03.
Article in English | MEDLINE | ID: mdl-34480946

ABSTRACT

This study is an attempt to assess CH4 and N2O emissions from all the treatment steps of a wastewater treatment plant (WWTP) in Sweden, serving 145 000 persons, and an adjacent biogas production facility. We have used novel mid-IR ground-based remote sensing with a hyperspectral camera to visualize and quantify the emissions on 21 days during a year, with resulting yearly fluxes of 90.4 ± 4.3 tonne CH4/yr and 10.9 ± 1.3 tonne N2O/yr for the entire plant. The most highly emitting CH4 source was found to be sludge storage, which is seldom included in literature as in-situ methods are not suitable for measuring emissions extended over large surfaces, still contributing 90 % to the total CH4 emission in our case. The dominating N2O source was found to be a Stable High rate Ammonia Removal Over Nitrite reactor, contributing 89 % to the total N2O emissions. We also discovered several unexpected CH4 sources. Incomplete flaring of CH4 gave fluxes of at least 30 kg CH4/min, corresponding to plume concentrations of 2.5 %. Such highly episodic fluxes could double the plant-wide yearly emissions if they occur 2 days per year. From a distance of 250 m we found a leak in the biogas production facility, corresponding to 1.1 % of the CH4 produced, and that loading of organic material onto trucks from a biofertilizer storage tank contributed with high emissions during loading events. These results indicate that WWTP emissions globally may have been grossly underestimated and that it is essential to have effective methods that can measure all types of fluxes, and discover new potential sources, in order to make adequate priorities and to take effective actions to mitigate greenhouse gas emissions from WWTPs.


Subject(s)
Nitrous Oxide , Water Purification , Biofuels , Carbon Dioxide/analysis , Methane , Remote Sensing Technology
14.
Sci Total Environ ; 806(Pt 2): 150478, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34582876

ABSTRACT

The levels of natural organic chlorine (Clorg) typically exceed levels of chloride in most soils and is therefore clearly of high importance for continental chlorine cycling. The high spatial variability raises questions on soil organic matter (SOM) chlorination rates among topsoils with different types of organic matter. We measured Clorg formation rates along depth profiles in six French temperate soils with similar Cl deposition using 36Cl tracer experiments. Three forest sites with different humus types and soils from grassland and arable land were studied. The highest specific chlorination rates (fraction of chlorine pool transformed to Clorg per time unit) among the forest soils were found in the humus layers. Comparing the forest sites, specific chlorination was highest in mull-type humus, characterized by high microbial activity and fast degradation of the organic matter. Considering non-humus soil layers, grassland and forest soils had similar specific chlorination rates in the uppermost layer (0-10 cm below humus layer). Below this depth the specific chlorination rate decreased slightly in forests, and drastically in the grassland soil. The agricultural soil exhibited the lowest specific chlorination rates, similar along the depth profile. Across all sites, specific chlorination rates were correlated with soil moisture and in combination with the patterns on organic matter types, the results suggest an extensive Cl cycling where humus types and soil moisture provided best conditions for microbial activity. Clorg accumulation and theoretical residence times were not clearly linked to chlorination rates. This indicates intensive Cl cycling between organic and inorganic forms in forest humus layers, regulated by humic matter reactivity and soil moisture, while long-term Clorg accumulation seems more linked with overall deep soil organic carbon stabilization. Thus, humus types and factors affecting soil carbon storage, including vegetation land use, could be used as indicators of potential Clorg formation and accumulation in soils.


Subject(s)
Halogenation , Soil , Agriculture , Carbon , Forests
15.
ACS Earth Space Chem ; 5(10): 2668-2676, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34712890

ABSTRACT

Methane (CH4) is one of the main greenhouse gas for which sources and sinks are poorly constrained and better capacity of mapping landscape emissions are broadly requested. A key challenge has been comprehensive, accurate, and sensitive emission measurements covering large areas at a resolution that allows separation of different types of local sources. We present a sensitive drone-based system for mapping CH4 hotspots, finding leaks from gas systems, and calculating total CH4 fluxes from anthropogenic environments such as wastewater treatment plants, landfills, energy production, biogas plants, and agriculture. All measurements are made on-board the drone, with no requirements for additional ground-based instruments. Horizontal flight patterns are used to map and find emission sources over large areas and vertical flight patterns for total CH4 fluxes using mass balance calculations. The small drone system (6.7 kg including batteries, sensors, loggers, and weather proofing) maps CH4 concentrations and wind speeds at 1 Hz with a precision of 0.84 ppb/s and 0.1 m/s, respectively. As a demonstration of the system and the mass balance method for a CH4 source that is difficult to assess with traditional methods, we have quantified fluxes from a sludge deposit at a wastewater treatment plant. Combining data from three 10 min flights, emission hotspots could be mapped and a total flux of 178.4 ± 8.1 kg CH4 d-1 was determined.

16.
Sci Adv ; 7(26)2021 Jun.
Article in English | MEDLINE | ID: mdl-34172455

ABSTRACT

The current resurgence of hydropower expansion toward tropical areas has been largely based on run-of-the-river (ROR) dams, which are claimed to have lower environmental impacts due to their smaller reservoirs. The Belo Monte dam was built in Eastern Amazonia and holds the largest installed capacity among ROR power plants worldwide. Here, we show that postdamming greenhouse gas (GHG) emissions in the Belo Monte area are up to three times higher than preimpoundment fluxes and equivalent to about 15 to 55 kg CO2eq MWh-1 Since per-area emissions in Amazonian reservoirs are significantly higher than global averages, reducing flooded areas and prioritizing the power density of hydropower plants seem to effectively reduce their carbon footprints. Nevertheless, total GHG emissions are substantial even from this leading-edge ROR power plant. This argues in favor of avoiding hydropower expansion in Amazonia regardless of the reservoir type.

17.
Limnol Oceanogr ; 66(3): 827-854, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33888916

ABSTRACT

The hydrodynamics within small boreal lakes have rarely been studied, yet knowing whether turbulence at the air-water interface and in the water column scales with metrics developed elsewhere is essential for computing metabolism and fluxes of climate-forcing trace gases. We instrumented a humic, 4.7 ha, boreal lake with two meteorological stations, three thermistor arrays, an infrared (IR) camera to quantify surface divergence, obtained turbulence as dissipation rate of turbulent kinetic energy (ε) using an acoustic Doppler velocimeter and a temperature-gradient microstructure profiler, and conducted chamber measurements for short periods to obtain fluxes and gas transfer velocities (k). Near-surface ε varied from 10-8 to 10-6 m2 s-3 for the 0-4 m s-1 winds and followed predictions from Monin-Obukhov similarity theory. The coefficient of eddy diffusivity in the mixed layer was up to 10-3 m2 s-1 on the windiest afternoons, an order of magnitude less other afternoons, and near molecular at deeper depths. The upper thermocline upwelled when Lake numbers (L N ) dropped below four facilitating vertical and horizontal exchange. k computed from a surface renewal model using ε agreed with values from chambers and surface divergence and increased linearly with wind speed. Diurnal thermoclines formed on sunny days when winds were < 3 m s-1, a condition that can lead to elevated near-surface ε and k. Results extend scaling approaches developed in the laboratory and for larger water bodies, illustrate turbulence and k are greater than expected in small wind-sheltered lakes, and provide new equations to quantify fluxes.

18.
Environ Sci Pollut Res Int ; 28(7): 7691-7709, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33400105

ABSTRACT

Chlorine (Cl) in the terrestrial environment is of interest from multiple perspectives, including the use of chloride as a tracer for water flow and contaminant transport, organochlorine pollutants, Cl cycling, radioactive waste (radioecology; 36Cl is of large concern) and plant science (Cl as essential element for living plants). During the past decades, there has been a rapid development towards improved understanding of the terrestrial Cl cycle. There is a ubiquitous and extensive natural chlorination of organic matter in terrestrial ecosystems where naturally formed chlorinated organic compounds (Clorg) in soil frequently exceed the abundance of chloride. Chloride dominates import and export from terrestrial ecosystems while soil Clorg and biomass Cl can dominate the standing stock Cl. This has important implications for Cl transport, as chloride will enter the Cl pools resulting in prolonged residence times. Clearly, these pools must be considered separately in future monitoring programs addressing Cl cycling. Moreover, there are indications that (1) large amounts of Cl can accumulate in biomass, in some cases representing the main Cl pool; (2) emissions of volatile organic chlorines could be a significant export pathway of Cl and (3) that there is a production of Clorg in tissues of, e.g. plants and animals and that Cl can accumulate as, e.g. chlorinated fatty acids in organisms. Yet, data focusing on ecosystem perspectives and combined spatiotemporal variability regarding various Cl pools are still scarce, and the processes and ecological roles of the extensive biological Cl cycling are still poorly understood.


Subject(s)
Chlorine , Ecosystem , Chlorides/analysis , Chlorine/analysis , Halogenation , Soil
19.
J Hazard Mater ; 401: 123681, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33113720

ABSTRACT

To date, there is no analytical approach available that allows the full identification and characterization of highly complex disinfection by-product (DBP) mixtures. This study aimed at investigating the chemodiversity of drinking water halogenated DBPs using diverse analytical tools: measurement of adsorbable organic halogen (AOX) and mass spectrometry (MS)-based target and non-target analytical workflows. Water was sampled before and after chemical disinfection (chlorine or chloramine) at four drinking water treatment plants in Sweden. The target analysis had the highest sensitivity, although it could only partially explain the AOX formed in the disinfected waters. Non-target Fourier transform ion cyclotron resonance (FT-ICR) MS analysis indicated that only up to 19 Cl and/or Br-CHO formulae were common to all disinfected waters. Unexpectedly, a high diversity of halogenated DBPs (presumed halogenated polyphenolic and highly unsaturated compounds) was found in chloraminated surface water, comparable to that found in chlorinated surface water. Overall, up to 86 DBPs (including isobaric species) were tentatively identified using liquid chromatography (LC)-Orbitrap MS. Although further work is needed to confirm their identity and assess their relevance in terms of toxicity, they can be used to design suspect lists to improve the characterization of disinfected water halogenated mixtures.


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Disinfectants/analysis , Disinfection , Halogenation , Sweden , Water Pollutants, Chemical/analysis
20.
Proc Natl Acad Sci U S A ; 117(35): 21488-21494, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32817550

ABSTRACT

Lakes are considered the second largest natural source of atmospheric methane (CH4). However, current estimates are still uncertain and do not account for diel variability of CH4 emissions. In this study, we performed high-resolution measurements of CH4 flux from several lakes, using an automated and sensor-based flux measurement approach (in total 4,580 measurements), and demonstrated a clear and consistent diel lake CH4 flux pattern during stratification and mixing periods. The maximum of CH4 flux were always noted between 10:00 and 16:00, whereas lower CH4 fluxes typically occurred during the nighttime (00:00-04:00). Regardless of the lake, CH4 emissions were on an average 2.4 higher during the day compared to the nighttime. Fluxes were higher during daytime on nearly 80% of the days. Accordingly, estimates and extrapolations based on daytime measurements only most likely result in overestimated fluxes, and consideration of diel variability is critical to properly assess the total lake CH4 flux, representing a key component of the global CH4 budget. Hence, based on a combination of our data and additional literature information considering diel variability across latitudes, we discuss ways to derive a diel variability correction factor for previous measurements made during daytime only.


Subject(s)
Lakes/chemistry , Methane/analysis , Methane/biosynthesis , Circadian Rhythm , Environmental Monitoring , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...